Information Bottleneck Domain Adaptation with Privileged Information for Visual Recognition

نویسندگان

  • Saeid Motiian
  • Gianfranco Doretto
چکیده

We address the unsupervised domain adaptation problem for visual recognition when an auxiliary data view is available during training. This is important because it allows improving the training of visual classifiers on a new target visual domain when paired additional source data is cheaply available. This is the case when we learn from a source of RGB plus depth data, for then test on a new RGB domain. The problem is challenging because of the intrinsic asymmetry caused by the missing auxiliary view during testing and from which discriminative information should be carried over to the new domain. We jointly account for the auxiliary view during training and for the domain shift by extending the information bottleneck method, and by combining it with risk minimization. In this way, we establish an information theoretic principle for learning any type of visual classifier under this particular settings. We use this principle to design a multi-class large-margin classifier with an efficient optimization in the primal space. We extensively compare our method with the state-of-the-art on several datasets, by effectively learning from RGB plus depth data to recognize objects and gender from a new RGB domain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Recognition of Visual Events using Spatio-Temporal Information of the Video Signal

Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016